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We are going to cover

▷ The different way to execute queries 
asynchronously in PostgreSQL

○ Client side
○ Server side
○ Autonomous vs distributed transactions
○ Scheduling
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1.
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Client Side
Asynchronous queries
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Client side

Executing queries asynchronously at application side

▷ Forks

▷ Queues

▷ Libpq
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Fork 

Main application
▷ BEGIN
▷ Do some transactional work…
▷ Fork a process and continue with main in parallel

○ Child executing asynchronously the query
▷ COMMIT/ROLLBACK
▷ Wait the end of the child process

The task is executed in another session

Autonomous transaction => no rollback

Results or errors from child process must be read from a table or 
multi-process communication. 7



Fork with transaction control
Main application
▷ BEGIN
▷ Do some transactional work…
▷ Fork a process and continue with main in parallel

○ PREPARE TRANSACTION ‘foo’
○ Execute the query in parallel

▷ Wait for child process
▷ COMMIT/ROLLBACK PREPARED ‘foo’
▷ COMMIT/ROLLBACK

The task is executed in another transaction controlled from the 
main process.

Results or errors from child process must be read from a table or 
multi-process communication. 8



Queue Management System

Main application
▷ BEGIN
▷ Transactional work
▷ Register the query/task in a queue (events table)

○ A queue consumer will execute the query in background 
▷ Execute some other works 
▷ COMMIT/ROLLBACK

❏ The task is executed by another application, no need to fork
❏ The event registration can also be done server side using triggers
❏ Autonomous transaction => no rollback
❏ No control when the task will be executed
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Queue system with transaction 
control

Main application
▷ BEGIN
▷ Transactional work
▷ Register the query/task in a queue (events table)

○ A queue consumer will execute the query in a prepared 
transaction

○ Write an event to forward the status of the task 
▷ Execute some other works
▷ Wait while the tracking event is not received
▷ COMMIT/ROLLBACK the prepared transaction
▷ COMMIT/ROLLBACK
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Queuing solutions
▷ pgq
▷ que
▷ RabbitMQ
▷ Kafka, …

Principle:
❏ Event table where the tasks to execute are stored
❏ The application register the event to be executed
❏ The events are consumed by the queuing system
❏ FIFO but some handle task priority and chaining 
❏ Queuing is generally based on autonomous transaction
❏ Event tracking for distributed transactions
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https://github.com/pgq/pgq
https://github.com/que-rb/que


Libpq

▷ PostgreSQL Client Library for application
○ Provide the API to

■ Connect to a database
■ Execute SQL queries
■ Get results
■ And more

▷ Most programming languages drivers are wrappers on libpq

▷ Query execution modes
○ Synchronous
○ Asynchronous
○ Pipelined ( >= PG14 )
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Synchronous command processing

▷ PQexec

○ Waits for the command to be completed.
○ The application is suspended while it waits for the result.
○ Always collects and buffers the command's entire results.
○ Can return only one PGresult structure

■ with multiple SQL commands, all but the last PGresult 
are discarded
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Libpq, Synchronous example
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res = PQexec(conn, "SELECT * FROM employees"); /* waits for the query to complete */

if (PQresultStatus(res) != PGRES_TUPLES_OK)

        /* error report … */ 

/* next, process the rows */

nFields = PQnfields(res);

for (i = 0; i < PQntuples(res); i++) {

        for (j = 0; j < nFields; j++)

            printf("%-15s", PQgetvalue(res, i, j));

}

PQclear(res);



Asynchronous command processing

▷ PQsendQuery
○ Submits a command to the server without waiting for result.

▷ PQgetResult
○ Waits for the next result from a prior PQsendQuery.
○ Must be called repeatedly until it returns a null pointer.
○ All results buffered in PGresult struct.
○ For a result with large number of rows

■ Use PQsetSingleRowMode

▷ PQsendQuery cannot be called again until PQgetResult has returned a null 
pointer.

▷ With multiple SQL commands, the results of each commands are available.
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Libpq, Asynchronous example
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res = PQSendQuery(conn, "SELECT * FROM employees"); /* returns immediately without waiting for command completion */

if (PQresultStatus(res) != PGRES_TUPLES_OK)

        /* error report … */ 

/* next, process the rows */

while(( res = PQgetResult(conn)) != NULL) {

    if (PQresultStatus (res)  == PGRES_TUPLES_OK) {

        nFields = PQnfields(res);

        for (i = 0; i < PQntuples(res); i++) {

            for (j = 0; j < nFields; j++)

 printf("%-15s", PQgetvalue(res, i, j));

        }

   } 

}



Libpq, Asynchronous

Calling PQgetResult still cause the client to block until the 
server completes the SQL command.

Some more useful functions:
▷ PQconsumeInput

○ If input is available from the server, consume it.
▷ PQisBusy

○ whether you can call PQgetResult without blocking
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Libpq, Asynchronous example
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res = PQSendQuery(conn, "SELECT long_running_query()");

if (PQresultStatus(res) != PGRES_TUPLES_OK)

        /* error report … */ 

if (PQconsumeInput(conn)) /* search for input */

{

    /* Does calling PGgetResult could be blocking ? */

    While ((PQisBusy(conn) == 1)

    {

/* In this case do something else and look for next input … */

            PQconsumeInput(conn)

    } 

    /* retrieve results */

    res = PqgetResult(conn);

}



Libpq, Pipeline mode

Interesting to send multiple queries executed in parallel by the 
backend, then read results from all queries.
▷  PQenterPipelineMode

○ Switch the connection to pipeline mode.
▷ The server executes statements, and returns results, in the 

order the client sends them.
▷ The server will begin to execute the commands in the 

pipeline immediately, not waiting for the end of the pipeline.
▷ Results are buffered on the server side.
▷ The server flushes the buffer when a synchronization point is 

called with PQpipelineSync or a call to PQsendFlushRequest.
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Libpq, Pipeline mode example

20

if (!PQenterPipelineMode(conn))   /* error report … */ 

/* send a first query */

res = PQSendQuery(conn, "INSERT … RETURNING id");

/* Instruct the backend that it can start to send the result */

if (PQsendFlushRequest(conn) == 0)  /* error report … */ 

/* send a new query */

res = PQSendQuery(conn, "INSERT … RETURNING id");

/* flush the statements and wait for the results */

if (PQpipelineSync(conn) == 0) /* error report … */ 

while ((res = PQgetResult(conn) != NULL) /* retrieve results from first query */

while ((res = PQgetResult(conn) != NULL) /* retrieve results from the second query */

PQexitPipelineMode(conn); /* exit pipeline mode */



Libpq, Pipeline mode

Client side since PG14 => but works with old server version

Available in several programming languages:
▷ Ruby
▷ Python
▷ Java
▷ …

21



Server Side
Asynchronous tasks
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Server side

Extensions allowing asynchronous execution

▷ pg_background
▷ dblink
▷ …
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https://github.com/vibhorkum/pg_background
https://www.postgresql.org/docs/current/dblink.html


pg_background

▷ pg_background_launch(query) -> pid
○ Launch a background worker to execute the query
○ Loopback connection (same host and same database)
○ Main use: autonomous transaction

▷ pg_background_detach(pid)
○ Detach the background process from the running 

session
○ No wait for the user to read the results.

▷ pg_background_result(pid)
○ Read the result of the command executed by the 

background process. 24



pg_background / Synchronous call
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db=# CREATE EXTENSION pg_background;

CREATE EXTENSION

/* Execute the command in a background process and wait for the result */

db=# SELECT pg_background_result( pg_background_launch('SELECT count(*) FROM employees') ) as (result bigint);

  result

--------

     107

/* Equivalent to the following except that it is executed in another session */

db=# SELECT count(*) from employees;

 count

-------

   107



pg_background / Asynchronous call
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db=# SELECT pg_background_launch('SELECT count(*) FROM employees');

 pg_background_launch

----------------------

            37713

/* Do something else */

db=# SELECT count(*) from employees;

 count

-------

   107

/* Get the result */

db=# SELECT * FROM pg_background_result(37713) as (result bigint);

 result

--------

107



pg_background / No results 
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db=# SELECT pg_background_launch(‘SELECT ');

 pg_background_launch

----------------------

            37791

db=# SELECT * FROM pg_background_detach(37791);

 pg_background_detach

----------------------

 

db=# SELECT * FROM pg_background_result(37791) as (result bigint);

ERROR:  PID 37791 is not attached to this session

▷ Fork to execute the command and leave without looking 
back



dblink

▷ Execute a command in a remote database

○ Same or different host / database ( pg_hba.conf )
○ Autonomous transaction
○ Returns the rows produced by the query
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dblink / synchronous call
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db=# CREATE EXTENSION dblink;

CREATE EXTENSION

db=# SELECT * FROM dblink('dbname=hr', 'SELECT count(*) FROM employees', true) AS t1(cnt bigint);

 cnt

-----

 107

(1 row)

▷ dblink(connstr, query [, bool fail_on_error]) -> setof record



dblink / asynchronous call

30

▷ dblink_send_query(connname, query) -> int
○ Execute asynchronously the query on remote connection
○ Returns 1 on success, 0 otherwise

▷ dblink_get_result(connname [, bool fail_on_error]) -> setof record
○ Collects the results of an asynchronous query
○ Wait when not already completed

▷ Use dblink_connect(connname, connstr) to open a named connection



dblink / asynchronous call
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db=# SELECT dblink_connect(‘conn1’, 'dbname=hr');

 dblink_connect

----------------

 OK

db=# SELECT dblink_send_query('conn1', 'SELECT count(*) FROM huge_table);

 dblink_send_query

-------------------

             1

[... do some work …]

db=# SELECT * FROM dblink_get_result('conn1') AS t1(f1 int);

        f1  

—-------------

 100000000



Scheduling
Asynchronous tasks

32



Schedulers

▷ pg_cron
○ The venerable cron-like scheduler for PostgreSQL

▷ pg_timetable
○ Cron based scheduler with advanced features

▷ pg_dbms_job
○ Manage scheduled jobs from a job queue
○ Execute immediately jobs asynchronously

▷ pgAgent, pgBucket,...

▷ All are interesting for planned tasks
▷ Short planned date to emulate asynchronous execution

○ Schedulers are not done for that unlike Queue system
○ Except pg_dbms_job 33

https://github.com/citusdata/pg_cron
https://github.com/cybertec-postgresql/pg_timetable
https://github.com/MigOpsRepos/pg_dbms_job


pg_cron
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▷ Simple cron-based job scheduler for PostgreSQL
○ https://github.com/citusdata/pg_cron
○ PostgreSQL extension written in C
○ Background worker started/stopped with PostgreSQL

■ shared_preload_libraries = 'pg_cron'
○ Automatically starts when a standby server is promoted
○ Scheduler granularity: minute

https://github.com/citusdata/pg_cron


pg_cron, example
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/* Delete old data on Saturday at 3:30am (GMT) */

SELECT cron.schedule('30 3 * * 6',

$$DELETE FROM events WHERE event_time < now() - interval '1 week'$$);

 schedule

----------

       42

/* Run a function asap and remove it */

SELECT cron.schedule('run-vacuum', '* * * * *', 'CALL my_proc()');

 schedule

----------

       43

SELECT cron.unschedule('run-vacuum'); /* remove the task */



pg_timetable

36

▷ Advanced cron-based job scheduler for PostgreSQL
○ https://github.com/cybertec-postgresql/pg_timetable
○ Standalone process, written in GO
○ Some useful advanced feature:

■ Chained tasks,
■ Executes SQL, built-in or executable command
■ Database driven configuration
■ Parameters can be passed to tasks
■ Scheduler granularity: minute
■ Etc

▷ No immediate asynchronous task execution.

https://github.com/cybertec-postgresql/pg_timetable


pg_timetable, example
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-- Run public.my_func() at 00:05 every day in August:

SELECT timetable.add_job('execute-func', '5 0 * 8 *', 'SELECT public.my_func()');

-- Run a function asap and remove it

SELECT timetable.add_job(

job_name =>’run-vacuum',

job_schedule => '* * * * *', 

job_command => ‘CALL my_proc()',

job_self_destruct => TRUE);



pg_dbms_job
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▷ Schedules and manages jobs in a job queue
○ https://github.com/MigOpsRepos/pg_dbms_job
○ Standalone process, written in Perl
○ Scheduler based on a Queue system

■ Immediate asynchronous query execution
■ Executes SQL statements, PLPGSQL procedures or code 
■ Database driven
■ Scheduler granularity: second

https://github.com/MigOpsRepos/pg_dbms_job


pg_dbms_job
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▷ A job definition consist on:
○ a code to execute,
○ the next date of execution

■ NULL/CURRENT_TIMESTAMP for immediate execution
○ and how often the job is to be run.

■ NULL for a single execution
▷ A job runs a SQL command, plpgsql code or an existing stored procedure.
▷ Job_queue_interval:

○ poll interval of the jobs queue. Default 5 seconds.
▷ Job_queue_processes:

○ Maximum number of job processed at the same time. Default 1000.



pg_dbms_job, immediate execution
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▷ Job submitted without execution date
▷ Stored in a queue (FIFO) table dbms_job.all_async_jobs
▷ Jobs in that queue at start of the scheduler are executed immediately

SELECT dbms_job.submit(

-- what to execute immediately

    'BEGIN

CALL proc1();

END;'

    ) INTO jobid;



pg_dbms_job, really immediate?
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▷ Job_queue_interval:
○ poll interval of the jobs queue. Default 5 seconds.

▷ Hard to trust an immediate execution with such polling interval!

○ dbms_job.submit() use NOTIFY to instruct the daemon pg_dbms_job 
that a new job has been registered.

○ LISTEN is called every 100ms by pg_dbms_job. 
○ pg_dbms_job look at job definitions every “job_queue_interval” 

seconds if no notification have been received.



pg_dbms_job, delayed execution
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▷ Job submitted with an execution date

▷ And if necessary an interval for a repeated execution

▷ Example of a job that must be executed next coming hour and after that, 
every 2 hours.

SELECT dbms_job.submit(

    'BEGIN CALL my_stored_procedure(); END;',

date_trunc( 'hour', now() ) + '1 hour'::interval, /* to be executed next starting hour */

date_trunc( 'second', now() ) + '2 hours'::interval /* every 2 hours */

    ) INTO jobid;



Thanks !

Email : gilles@darold.net

Any questions?
43
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