
Asynchronous queries
with PostgreSQL

P2D2 – Praha 2022

We are going to cover

▷ The different way to execute queries
asynchronously in PostgreSQL

○ Client side
○ Server side
○ Autonomous vs distributed transactions
○ Scheduling

2

1.
Introducing

3

4

Gilles DAROLD
CTO at MigOps Inc

Author of Ora2Pg, pgBadger, ….

MigOps Inc
Company specialized in Support and Migration to PostgreSQL

▷ Sponsors the development of Ora2Pg, pgBadger and others tools at
https://github.com/MigOpsRepos/ and https://github.com/darold/

Contact : https://www.migops.com/contact-us/

https://github.com/MigOpsRepos/
https://github.com/darold/

Client Side
Asynchronous queries

5

Client side

Executing queries asynchronously at application side

▷ Forks

▷ Queues

▷ Libpq

6

Fork

Main application
▷ BEGIN
▷ Do some transactional work…
▷ Fork a process and continue with main in parallel

○ Child executing asynchronously the query
▷ COMMIT/ROLLBACK
▷ Wait the end of the child process

The task is executed in another session

Autonomous transaction => no rollback

Results or errors from child process must be read from a table or
multi-process communication. 7

Fork with transaction control
Main application
▷ BEGIN
▷ Do some transactional work…
▷ Fork a process and continue with main in parallel

○ PREPARE TRANSACTION ‘foo’
○ Execute the query in parallel

▷ Wait for child process
▷ COMMIT/ROLLBACK PREPARED ‘foo’
▷ COMMIT/ROLLBACK

The task is executed in another transaction controlled from the
main process.

Results or errors from child process must be read from a table or
multi-process communication. 8

Queue Management System

Main application
▷ BEGIN
▷ Transactional work
▷ Register the query/task in a queue (events table)

○ A queue consumer will execute the query in background
▷ Execute some other works
▷ COMMIT/ROLLBACK

❏ The task is executed by another application, no need to fork
❏ The event registration can also be done server side using triggers
❏ Autonomous transaction => no rollback
❏ No control when the task will be executed

9

Queue system with transaction
control

Main application
▷ BEGIN
▷ Transactional work
▷ Register the query/task in a queue (events table)

○ A queue consumer will execute the query in a prepared
transaction

○ Write an event to forward the status of the task
▷ Execute some other works
▷ Wait while the tracking event is not received
▷ COMMIT/ROLLBACK the prepared transaction
▷ COMMIT/ROLLBACK

10

Queuing solutions
▷ pgq
▷ que
▷ RabbitMQ
▷ Kafka, …

Principle:
❏ Event table where the tasks to execute are stored
❏ The application register the event to be executed
❏ The events are consumed by the queuing system
❏ FIFO but some handle task priority and chaining
❏ Queuing is generally based on autonomous transaction
❏ Event tracking for distributed transactions

11

https://github.com/pgq/pgq
https://github.com/que-rb/que

Libpq

▷ PostgreSQL Client Library for application
○ Provide the API to

■ Connect to a database
■ Execute SQL queries
■ Get results
■ And more

▷ Most programming languages drivers are wrappers on libpq

▷ Query execution modes
○ Synchronous
○ Asynchronous
○ Pipelined (>= PG14)

12

Synchronous command processing

▷ PQexec

○ Waits for the command to be completed.
○ The application is suspended while it waits for the result.
○ Always collects and buffers the command's entire results.
○ Can return only one PGresult structure

■ with multiple SQL commands, all but the last PGresult
are discarded

13

Libpq, Synchronous example

14

res = PQexec(conn, "SELECT * FROM employees"); /* waits for the query to complete */

if (PQresultStatus(res) != PGRES_TUPLES_OK)

 /* error report … */

/* next, process the rows */

nFields = PQnfields(res);

for (i = 0; i < PQntuples(res); i++) {

 for (j = 0; j < nFields; j++)

 printf("%-15s", PQgetvalue(res, i, j));

}

PQclear(res);

Asynchronous command processing

▷ PQsendQuery
○ Submits a command to the server without waiting for result.

▷ PQgetResult
○ Waits for the next result from a prior PQsendQuery.
○ Must be called repeatedly until it returns a null pointer.
○ All results buffered in PGresult struct.
○ For a result with large number of rows

■ Use PQsetSingleRowMode

▷ PQsendQuery cannot be called again until PQgetResult has returned a null
pointer.

▷ With multiple SQL commands, the results of each commands are available.
15

Libpq, Asynchronous example

16

res = PQSendQuery(conn, "SELECT * FROM employees"); /* returns immediately without waiting for command completion */

if (PQresultStatus(res) != PGRES_TUPLES_OK)

 /* error report … */

/* next, process the rows */

while((res = PQgetResult(conn)) != NULL) {

 if (PQresultStatus (res) == PGRES_TUPLES_OK) {

 nFields = PQnfields(res);

 for (i = 0; i < PQntuples(res); i++) {

 for (j = 0; j < nFields; j++)

 printf("%-15s", PQgetvalue(res, i, j));

 }

 }

}

Libpq, Asynchronous

Calling PQgetResult still cause the client to block until the
server completes the SQL command.

Some more useful functions:
▷ PQconsumeInput

○ If input is available from the server, consume it.
▷ PQisBusy

○ whether you can call PQgetResult without blocking

17

Libpq, Asynchronous example

18

res = PQSendQuery(conn, "SELECT long_running_query()");

if (PQresultStatus(res) != PGRES_TUPLES_OK)

 /* error report … */

if (PQconsumeInput(conn)) /* search for input */

{

 /* Does calling PGgetResult could be blocking ? */

 While ((PQisBusy(conn) == 1)

 {

/* In this case do something else and look for next input … */

 PQconsumeInput(conn)

 }

 /* retrieve results */

 res = PqgetResult(conn);

}

Libpq, Pipeline mode

Interesting to send multiple queries executed in parallel by the
backend, then read results from all queries.
▷ PQenterPipelineMode

○ Switch the connection to pipeline mode.
▷ The server executes statements, and returns results, in the

order the client sends them.
▷ The server will begin to execute the commands in the

pipeline immediately, not waiting for the end of the pipeline.
▷ Results are buffered on the server side.
▷ The server flushes the buffer when a synchronization point is

called with PQpipelineSync or a call to PQsendFlushRequest.

19

Libpq, Pipeline mode example

20

if (!PQenterPipelineMode(conn)) /* error report … */

/* send a first query */

res = PQSendQuery(conn, "INSERT … RETURNING id");

/* Instruct the backend that it can start to send the result */

if (PQsendFlushRequest(conn) == 0) /* error report … */

/* send a new query */

res = PQSendQuery(conn, "INSERT … RETURNING id");

/* flush the statements and wait for the results */

if (PQpipelineSync(conn) == 0) /* error report … */

while ((res = PQgetResult(conn) != NULL) /* retrieve results from first query */

while ((res = PQgetResult(conn) != NULL) /* retrieve results from the second query */

PQexitPipelineMode(conn); /* exit pipeline mode */

Libpq, Pipeline mode

Client side since PG14 => but works with old server version

Available in several programming languages:
▷ Ruby
▷ Python
▷ Java
▷ …

21

Server Side
Asynchronous tasks

22

Server side

Extensions allowing asynchronous execution

▷ pg_background
▷ dblink
▷ …

23

https://github.com/vibhorkum/pg_background
https://www.postgresql.org/docs/current/dblink.html

pg_background

▷ pg_background_launch(query) -> pid
○ Launch a background worker to execute the query
○ Loopback connection (same host and same database)
○ Main use: autonomous transaction

▷ pg_background_detach(pid)
○ Detach the background process from the running

session
○ No wait for the user to read the results.

▷ pg_background_result(pid)
○ Read the result of the command executed by the

background process. 24

pg_background / Synchronous call

25

db=# CREATE EXTENSION pg_background;

CREATE EXTENSION

/* Execute the command in a background process and wait for the result */

db=# SELECT pg_background_result(pg_background_launch('SELECT count(*) FROM employees')) as (result bigint);

 result

 107

/* Equivalent to the following except that it is executed in another session */

db=# SELECT count(*) from employees;

 count

 107

pg_background / Asynchronous call

26

db=# SELECT pg_background_launch('SELECT count(*) FROM employees');

 pg_background_launch

 37713

/* Do something else */

db=# SELECT count(*) from employees;

 count

 107

/* Get the result */

db=# SELECT * FROM pg_background_result(37713) as (result bigint);

 result

107

pg_background / No results

27

db=# SELECT pg_background_launch(‘SELECT ');

 pg_background_launch

 37791

db=# SELECT * FROM pg_background_detach(37791);

 pg_background_detach

db=# SELECT * FROM pg_background_result(37791) as (result bigint);

ERROR: PID 37791 is not attached to this session

▷ Fork to execute the command and leave without looking
back

dblink

▷ Execute a command in a remote database

○ Same or different host / database (pg_hba.conf)
○ Autonomous transaction
○ Returns the rows produced by the query

28

dblink / synchronous call

29

db=# CREATE EXTENSION dblink;

CREATE EXTENSION

db=# SELECT * FROM dblink('dbname=hr', 'SELECT count(*) FROM employees', true) AS t1(cnt bigint);

 cnt

 107

(1 row)

▷ dblink(connstr, query [, bool fail_on_error]) -> setof record

dblink / asynchronous call

30

▷ dblink_send_query(connname, query) -> int
○ Execute asynchronously the query on remote connection
○ Returns 1 on success, 0 otherwise

▷ dblink_get_result(connname [, bool fail_on_error]) -> setof record
○ Collects the results of an asynchronous query
○ Wait when not already completed

▷ Use dblink_connect(connname, connstr) to open a named connection

dblink / asynchronous call

31

db=# SELECT dblink_connect(‘conn1’, 'dbname=hr');

 dblink_connect

 OK

db=# SELECT dblink_send_query('conn1', 'SELECT count(*) FROM huge_table);

 dblink_send_query

 1

[... do some work …]

db=# SELECT * FROM dblink_get_result('conn1') AS t1(f1 int);

 f1

—-------------

 100000000

Scheduling
Asynchronous tasks

32

Schedulers

▷ pg_cron
○ The venerable cron-like scheduler for PostgreSQL

▷ pg_timetable
○ Cron based scheduler with advanced features

▷ pg_dbms_job
○ Manage scheduled jobs from a job queue
○ Execute immediately jobs asynchronously

▷ pgAgent, pgBucket,...

▷ All are interesting for planned tasks
▷ Short planned date to emulate asynchronous execution

○ Schedulers are not done for that unlike Queue system
○ Except pg_dbms_job 33

https://github.com/citusdata/pg_cron
https://github.com/cybertec-postgresql/pg_timetable
https://github.com/MigOpsRepos/pg_dbms_job

pg_cron

34

▷ Simple cron-based job scheduler for PostgreSQL
○ https://github.com/citusdata/pg_cron
○ PostgreSQL extension written in C
○ Background worker started/stopped with PostgreSQL

■ shared_preload_libraries = 'pg_cron'
○ Automatically starts when a standby server is promoted
○ Scheduler granularity: minute

https://github.com/citusdata/pg_cron

pg_cron, example

35

/* Delete old data on Saturday at 3:30am (GMT) */

SELECT cron.schedule('30 3 * * 6',

$$DELETE FROM events WHERE event_time < now() - interval '1 week'$$);

 schedule

 42

/* Run a function asap and remove it */

SELECT cron.schedule('run-vacuum', '* * * * *', 'CALL my_proc()');

 schedule

 43

SELECT cron.unschedule('run-vacuum'); /* remove the task */

pg_timetable

36

▷ Advanced cron-based job scheduler for PostgreSQL
○ https://github.com/cybertec-postgresql/pg_timetable
○ Standalone process, written in GO
○ Some useful advanced feature:

■ Chained tasks,
■ Executes SQL, built-in or executable command
■ Database driven configuration
■ Parameters can be passed to tasks
■ Scheduler granularity: minute
■ Etc

▷ No immediate asynchronous task execution.

https://github.com/cybertec-postgresql/pg_timetable

pg_timetable, example

37

-- Run public.my_func() at 00:05 every day in August:

SELECT timetable.add_job('execute-func', '5 0 * 8 *', 'SELECT public.my_func()');

-- Run a function asap and remove it

SELECT timetable.add_job(

job_name =>’run-vacuum',

job_schedule => '* * * * *',

job_command => ‘CALL my_proc()',

job_self_destruct => TRUE);

pg_dbms_job

38

▷ Schedules and manages jobs in a job queue
○ https://github.com/MigOpsRepos/pg_dbms_job
○ Standalone process, written in Perl
○ Scheduler based on a Queue system

■ Immediate asynchronous query execution
■ Executes SQL statements, PLPGSQL procedures or code
■ Database driven
■ Scheduler granularity: second

https://github.com/MigOpsRepos/pg_dbms_job

pg_dbms_job

39

▷ A job definition consist on:
○ a code to execute,
○ the next date of execution

■ NULL/CURRENT_TIMESTAMP for immediate execution
○ and how often the job is to be run.

■ NULL for a single execution
▷ A job runs a SQL command, plpgsql code or an existing stored procedure.
▷ Job_queue_interval:

○ poll interval of the jobs queue. Default 5 seconds.
▷ Job_queue_processes:

○ Maximum number of job processed at the same time. Default 1000.

pg_dbms_job, immediate execution

40

▷ Job submitted without execution date
▷ Stored in a queue (FIFO) table dbms_job.all_async_jobs
▷ Jobs in that queue at start of the scheduler are executed immediately

SELECT dbms_job.submit(

-- what to execute immediately

 'BEGIN

CALL proc1();

END;'

) INTO jobid;

pg_dbms_job, really immediate?

41

▷ Job_queue_interval:
○ poll interval of the jobs queue. Default 5 seconds.

▷ Hard to trust an immediate execution with such polling interval!

○ dbms_job.submit() use NOTIFY to instruct the daemon pg_dbms_job
that a new job has been registered.

○ LISTEN is called every 100ms by pg_dbms_job.
○ pg_dbms_job look at job definitions every “job_queue_interval”

seconds if no notification have been received.

pg_dbms_job, delayed execution

42

▷ Job submitted with an execution date

▷ And if necessary an interval for a repeated execution

▷ Example of a job that must be executed next coming hour and after that,
every 2 hours.

SELECT dbms_job.submit(

 'BEGIN CALL my_stored_procedure(); END;',

date_trunc('hour', now()) + '1 hour'::interval, /* to be executed next starting hour */

date_trunc('second', now()) + '2 hours'::interval /* every 2 hours */

) INTO jobid;

Thanks !

Email : gilles@darold.net

Any questions?
43

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

